# Introduction to Computer Security II



## Model



## Model

- Recall from last lecture:
  - Assets (what you want to protect)
  - Threats (what could damage your assets)
  - Security is about threats arising from intelligent, motivated attackers

## **Clarifications and Terminology**

- Safety and security are about the prevention of adverse consequences
- Security is concerned with intentional threats against assets
  - Unwarranted from the point of view of the defender
  - The person carrying these out is the attacker

## **Extending the Model**

- Threats occur with different probabilities
- *Risk* takes into account the likelihood of a threat

#### risk = threats x probability

• Countermeasures we put in place to protect assets from threats

## Risk

- Goal of a safety or security system is to reduce *risk*, not to reduce *threat*
- Reducing *threat* could lead us astray:
  - Focus too much on serious but unlikely threats
  - Focus too little on mild but very common threats

## **Risk Matrix**

|                  | Low Threat  | High Threat |
|------------------|-------------|-------------|
| Low Probability  | Low Risk    | Medium Risk |
| High Probability | Medium Risk | High Risk   |

## **Risk Matrix**

|                  | Low Threat                                                         | High Threat                                                    |
|------------------|--------------------------------------------------------------------|----------------------------------------------------------------|
| Low Probability  | Lunch stolen from the fridge                                       | Shark Attack <sup>2</sup><br>Murder by Stranger<br>Plane Crash |
| High Probability | Common Cold <sup>1</sup><br>Minor Shoplifting<br>Stubbing your Toe | Heart Disease<br>Car Accident                                  |

1 https://www.ncbi.nlm.nih.gov/pubmed/12227674

## Countermeasures

- No countermeasure is perfect
- No countermeasure is free
  - Money
  - Time
  - Convenience
  - Social acceptability
  - Liberty

## **Trade-Offs**



## **Trade-Offs**

#### • Recall:

- We care about mitigating risks (not threats)
- No countermeasure is perfect
- No countermeasure is free
- The trade-off is balancing:
  - Cost of countermeasures
  - Risk of not employing countermeasures

## **Trade-Offs**

- We do this all the time
  - Clean the dishes
  - Lock your bike
  - Choosing between expiration dates
  - Others?

## **Trade-Offs: Consequences**

- "Absolute security" never worth it
  - Want to stay perfectly safe? Never go outside.
  - Keep airplanes safe? Strip search every passenger.
- Sometimes less security is the better trade-off
  - Most shoplifting occurs in dressing rooms get rid of the dressing rooms?
  - Hire extra guards at the movie theater to prevent a few people sneaking in?

## **Book Recommendation**



To learn more about the fundamentals of security...

## Beyond Fear:

Thinking Sensibly about Security in an Uncertain World by Bruce Schneier

# **Computer Security**



## **Computer Security**

- Computer security is a subset of security
  Same principles apply
- However, it's useful to make simplifying assumptions (that we couldn't make in the physical world)
- Such as?

## **Simplifying Assumptions**

- Idealized behavior of systems
  - bug-free implementations
  - vulnerabilities "exist" or "do not exist"
  - tools can achieve perfect security
- Idealized attackers
  - can eavesdrop but not modify network traffic
  - can't beat users with rubber hoses
- Idealized users
  - can remeber 200-character passwords

## Reality

- These simplifying assumptions aren't true...
  - Formal definitions  $\neq$  reality
    - Reality doesn't match the model; "perfect" security doesn't actually exist
    - We can't know whether a vulnerability has been fixed or not
    - Even if we pretend to strive for perfect security, we'll never get there

## **Computer Security**

- Consequence:
  - When deploying/designing/building a sufficiently large system, consider *risk* and *imperfect countermeasures*
  - When developing tools/working with cryptography/etc., pretend there's perfect security
- Rest of the course
  - start with the ideal world
  - end with the real world