WiFi Identification & Authentication

Terms and Concepts

- AP "Access Point"
 - A device capable of accepting client WiFi connections
- SSID "Service Set Identifier"
 - Human-readable network name ("Brown-Guest")
- BSSID "Basic Service Set Identifier"
 - Identifies the AP (usually the device's MAC address)
- Can be multiple APs serving a single SSID
- Thus, can be multiple BSSIDs per SSID

- SSIDs are all that identify a network
 - Can't tell two networks with same SSID apart
- "<u>On iPhone, beware of that AT&T WiFi hot</u> spot"
 "Rogue AP" problem

- SSIDs are all that identify a network
 - Can't tell two networks with same SSID apart
- "On iPhone, beware of that AT&T WiFi hot spot"
 - "Rogue AP" problem
- Client devices actively broadcast trying to connect to known SSIDs
 - \circ Sniff these broadcasts, pretend to be the SSID

• What can you do with a rogue AP?

- What can you do with a rogue AP?
- Sniffing, but you could do that anyway
- Active MitM
 - Fake captive portal (phish credentials)
 - "Phishing in Public WiFi Connections Plagu China's Major Cities"
 - <u>Upside-Down-Ternet</u>

SSID Issues - Upside-Down-Ternet

SSID Issues - Upside-Down-Ternet

SSID Issues - Privacy

- Clients broadcast looking for known SSIDs
- What could we learn?

SSID Issues - Privacy

- Clients broadcast looking for known SSIDs
- What could we learn?
 - Lots, but let's look at location
- <u>Skyhook</u>

Engine)

- "No GPS? No problem!"
- Google Street View
 - Joffe v. Google (Google violated the Wiretap Act)
- <u>WiGLE</u> (Wireless Geographic Logging

Ivy + WEP

Ivy Problem Recap

Ivy Problem Recap

- Randomly-generated IVs
- Problem: Same IV means same key stream
- Get key streams to cancel

Ivy Problem Recap

key stream = $S(k + iv_0)$

=

message

© 2016 J. Liebow-Feeser, B. Palazzi, R. Tamassia, CC BY-SA 2.5

WEP

- Very similar to Ivy
- 24-bit IVs
- RC4 PRNG
- RC4 seed = shared secret key + iv

WEP - RC4 Weakness

- Fluhrer, Mantin, and Shamir, 2001
- RC4 has "weak [seeds]" (usually called keys)
- Given ciphertexts, can recover full RC4 seed

WEP has RC4 seed as key + iv (iv is public)
Last 24 bits of seed (IV) is enough to know whether the seed will be a weak seed

- Step 1. Sniff many packets
- Step 2. Filter for IVs that indicate weak seeds
- Step 3. Recover full RC4 seed
 - High-order bits are the shared secret WEP key
- Step 4. Profit

- Problem: need *many* IVs to find enough weak seeds. For a 104-bit key:
 - 40K IVs = ~50% probability of success
 - 85K IVs = ~95% probability of success
- Might take a while...

- Solution: injection
- Idea: force network to send more packets

- Step 1. Capture packets
- Step 2. Wait for an ARP request
 - Always 28 bytes long (WEP preserves plaintext length)
 - Once you have a candidate ARP request, send it to the AP. Does it send an ARP reply?
- Step 3. Replay the ARP request over and over

Brown Gersity Step 4. AP will respond to each with an ARP