1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// Copyright 2018 Google LLC
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.

//! Public key cryptography.

pub mod ec;
pub mod ed25519;
pub mod rsa;

use boringssl::{CHeapWrapper, CStackWrapper};
use public::inner::BoringDerKey;
use util::Sealed;
use Error;

/// The public component of a public/private key pair.
pub trait PublicKey: Sealed + Sized {
    /// The type of the private component.
    type Private: PrivateKey<Public = Self>;

    /// Verifies a message with this public key.
    ///
    /// `is_valid` verifies that a message was signed by the private key
    /// corresponding to this public key. It is equivalent to
    /// `signature.is_valid(self, message)`.
    #[must_use]
    fn is_valid<S: Signature<PrivateKey = Self::Private>>(
        &self,
        message: &[u8],
        signature: &S,
    ) -> bool {
        signature.is_valid(self, message)
    }
}

/// The private component of a public/private key pair.
pub trait PrivateKey: Sealed + Sized {
    /// The type of the public component.
    type Public: PublicKey<Private = Self>;

    /// Gets the public key corresponding to this private key.
    #[must_use]
    fn public(&self) -> Self::Public;

    /// Signs a message with this private key.
    ///
    /// `sign` signs a message with this key using the signature scheme `S`. It
    /// is equivalent to `S::sign(self, message)`.
    #[must_use]
    fn sign<S: Signature<PrivateKey = Self>>(&self, message: &[u8]) -> Result<S, Error> {
        S::sign(self, message)
    }
}

/// A public key which can be encoded as a DER object.
pub trait DerPublicKey: PublicKey + self::inner::DerKey {
    /// Marshals a public key in DER format.
    ///
    /// `marshal_to_der` marshals a public key as a DER-encoded
    /// SubjectPublicKeyInfo structure as defined in [RFC 5280].
    ///
    /// [RFC 5280]: https://tools.ietf.org/html/rfc5280
    #[must_use]
    fn marshal_to_der(&self) -> Vec<u8> {
        let mut evp_pkey = CHeapWrapper::default();
        self.boring().pkey_assign(&mut evp_pkey);
        // cbb_new can only fail due to OOM
        let mut cbb = CStackWrapper::cbb_new(64).unwrap();
        evp_pkey.evp_marshal_public_key(&mut cbb).expect("failed to marshal public key");
        cbb.cbb_with_data(<[u8]>::to_vec)
    }

    /// Parses a public key in DER format.
    ///
    /// `parse_from_der` parses a public key from a DER-encoded
    /// SubjectPublicKeyInfo structure as defined in [RFC 5280].
    ///
    /// # Elliptic Curve Keys
    ///
    /// For Elliptic Curve keys ([`EcPubKey`]), the curve itself is validated.
    /// If the curve is not known ahead of time, and any curve must be supported
    /// at runtime, use the [`EcPubKeyAnyCurve::parse_from_der`] function.
    ///
    /// [RFC 5280]: https://tools.ietf.org/html/rfc5280
    /// [`EcPubKey`]: ::public::ec::EcPubKey
    /// [`EcPubKeyAnyCurve::parse_from_der`]: ::public::ec::EcPubKeyAnyCurve::parse_from_der
    #[must_use]
    fn parse_from_der(bytes: &[u8]) -> Result<Self, Error> {
        CStackWrapper::cbs_with_temp_buffer(bytes, |cbs| {
            let mut evp_pkey = CHeapWrapper::evp_parse_public_key(cbs)?;
            // NOTE: For EC, panics if evp_pkey doesn't have its group set. This is
            // OK because EVP_parse_public_key guarantees that the returned key has
            // its group set.
            let key = Self::Boring::pkey_get(&mut evp_pkey)?;
            if cbs.cbs_len() > 0 {
                return Err(Error::new("malformed DER input".to_string()));
            }
            Ok(Self::from_boring(key))
        })
    }
}

/// A private key which can be encoded as a DER object.
pub trait DerPrivateKey: PrivateKey + self::inner::DerKey {
    /// Marshals a private key in DER format.
    ///
    /// `marshal_to_der` marshal a private key as a DER-encoded structure. The
    /// exact structure encoded depends on the type of key:
    /// - For an EC key, it is an ECPrivateKey structure as defined in [RFC
    ///   5915].
    /// - For an RSA key, it is an RSAPrivateKey structure as defined in [RFC
    ///   3447].
    ///
    /// [RFC 5915]: https://tools.ietf.org/html/rfc5915
    /// [RFC 3447]: https://tools.ietf.org/html/rfc3447
    #[must_use]
    fn marshal_to_der(&self) -> Vec<u8> {
        // cbb_new can only fail due to OOM
        let mut cbb = CStackWrapper::cbb_new(64).unwrap();
        self.boring().marshal_private_key(&mut cbb).expect("failed to marshal private key");
        cbb.cbb_with_data(<[u8]>::to_vec)
    }

    /// Parses a private key in DER format.
    ///
    /// `parse_from_der` parses a private key from a DER-encoded format. The
    /// exact structure expected depends on the type of key:
    /// - For an EC key, it is an ECPrivateKey structure as defined in [RFC
    ///   5915].
    /// - For an RSA key, it is an RSAPrivateKey structure as defined in [RFC
    ///   3447].
    ///
    /// # Elliptic Curve Keys
    ///
    /// For Elliptic Curve keys ([`EcPrivKey`]), the curve itself is validated. If
    /// the curve is not known ahead of time, and any curve must be supported at
    /// runtime, use the [`EcPrivKeyAnyCurve::parse_from_der`] function.
    ///
    /// [RFC 5915]: https://tools.ietf.org/html/rfc5915
    /// [RFC 3447]: https://tools.ietf.org/html/rfc3447
    /// [`EcPrivKey`]: ::public::ec::EcPrivKey
    /// [`EcPrivKeyAnyCurve::parse_from_der`]: ::public::ec::EcPrivKeyAnyCurve::parse_from_der
    #[must_use]
    fn parse_from_der(bytes: &[u8]) -> Result<Self, Error> {
        CStackWrapper::cbs_with_temp_buffer(bytes, |cbs| {
            let key = Self::Boring::parse_private_key(cbs)?;
            if cbs.cbs_len() > 0 {
                return Err(Error::new("malformed DER input".to_string()));
            }
            Ok(Self::from_boring(key))
        })
    }
}

/// A cryptographic signature generated by a private key.
pub trait Signature: Sealed + Sized {
    /// The private key type used to generate this signature.
    type PrivateKey: PrivateKey;

    /// Sign a message.
    ///
    /// The input to this function is always a message, never a digest. If a
    /// signature scheme calls for hashing a message and signing the hash
    /// digest, `sign` is responsible for both hashing and signing.
    #[must_use]
    fn sign(key: &Self::PrivateKey, message: &[u8]) -> Result<Self, Error>;

    /// Verify a signature.
    ///
    /// The input to this function is always a message, never a digest. If a
    /// signature scheme calls for hashing a message and signing the hash
    /// digest, `is_valid` is responsible for both hashing and verifying the
    /// digest.
    #[must_use]
    fn is_valid(&self, key: &<Self::PrivateKey as PrivateKey>::Public, message: &[u8]) -> bool;
}

mod inner {
    use boringssl::{self, CHeapWrapper, CStackWrapper};
    use Error;

    /// A wrapper around a BoringSSL key object.
    pub trait BoringDerKey: Sized {
        // evp_pkey_assign_xxx
        fn pkey_assign(&self, pkey: &mut CHeapWrapper<boringssl::EVP_PKEY>);

        // evp_pkey_get_xxx; panics if the key is an EC key and doesn't have a group set,
        // and errors if pkey isn't the expected key type
        fn pkey_get(pkey: &mut CHeapWrapper<boringssl::EVP_PKEY>) -> Result<Self, Error>;

        // xxx_parse_private_key
        fn parse_private_key(cbs: &mut CStackWrapper<boringssl::CBS>) -> Result<Self, Error>;

        // xxx_marshal_private_key
        fn marshal_private_key(&self, cbb: &mut CStackWrapper<boringssl::CBB>)
            -> Result<(), Error>;
    }

    /// Properties shared by both public and private keys of a given type.
    pub trait DerKey {
        /// The underlying BoringSSL object wrapper type.
        type Boring: BoringDerKey;

        fn boring(&self) -> &Self::Boring;

        fn from_boring(boring: Self::Boring) -> Self;
    }
}

#[cfg(test)]
mod testutil {
    use super::*;

    /// Smoke test a signature scheme.
    ///
    /// `sig_from_bytes` takes a byte slice and converts it into a signature. If
    /// the byte slice is too long, it either truncate it or treats it as
    /// invalid (it's up to the caller). If the byte slice is too short, it
    /// fills in the remaining bytes with zeroes.
    pub fn test_signature_smoke<S: Signature, F: Fn(&[u8]) -> S, G: Fn(&S) -> &[u8]>(
        key: &S::PrivateKey,
        sig_from_bytes: F,
        bytes_from_sig: G,
    ) {
        // Sign the message, verify the signature, and return the signature.
        // Also verify that, if the wrong signature is used, the signature fails
        // to verify. Also verify that sig_from_bytes works.
        fn sign_and_verify<S: Signature, F: Fn(&[u8]) -> S, G: Fn(&S) -> &[u8]>(
            key: &S::PrivateKey,
            message: &[u8],
            sig_from_bytes: F,
            bytes_from_sig: G,
        ) -> S {
            let sig = S::sign(key, message).unwrap();
            assert!(sig.is_valid(&key.public(), message));
            // Make sure the PrivateKey::sign and PublicKey::is_valid convenience
            // functions also work.
            let sig = key.sign::<S>(message).unwrap();
            assert!(key.public().is_valid(message, &sig));
            let sig2 = S::sign(&key, bytes_from_sig(&sig)).unwrap();
            assert!(!sig2.is_valid(&key.public(), message));
            // Make sure the PrivateKey::sign and PublicKey::is_valid convenience
            // functions also work.
            let sig2 = key.sign::<S>(bytes_from_sig(&sig)).unwrap();
            assert!(!key.public().is_valid(message, &sig2));
            sig_from_bytes(bytes_from_sig(&sig))
        }

        // Sign an empty message, and verify the signature. Use the signature as
        // the next message to test, and repeat many times.
        let mut msg = Vec::new();
        for _ in 0..16 {
            msg = bytes_from_sig(&sign_and_verify(key, &msg, &sig_from_bytes, &bytes_from_sig))
                .to_vec();
        }
    }
}